Научный руководитель **Л. А. Воробей**

Белорусский торгово-экономический университет потребительской кооперации г. Гомель, Республика Беларусь

ПРИМЕНЕНИЕ АППАРАТА ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЙ СФЕРЕ

Напомним, что дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции и в которые входят не только сами функции, но и их производные. В природе и обществе встречаются процессы, где некоторые величины увеличиваются за равные промежутки времени в одно и то же число раз. Их называют процессами естественного роста. Если допустить, что значение величины y(t) меняется одинаково не в течение промежутка фиксированной длительности Δt , а мгновенно, то скорость изменения величины v(t) в момент времени t пропорциональна значению этой величины в тот же момент времени. Уравнение, описывающее этот процесс, можно записать так: v(t) = ky(t). Так как v(t) = y'(t), то получим дифференциальное уравнение с разделяющими переменными: y'(t) = ky(t). Это уравнение называют дифференциальным уравнением естественного роста. Впервые его получил Якоб Бернулли.

Рассмотрим применение полученного уравнения при решении задач социально-экономической сферы.

Пример (износ оборудования). Скорость обесценивания оборудования вследствие его износа пропорциональна его фактической стоимости. Найдем закон изменения стоимости оборудования, если начальная его стоимость равна S_0 .

Peшениe. Пусть s(t) — стоимость оборудования в момент времени t. Тогда s'(t) — скорость изменения стоимости вследствие износа. Согласно условию задачи получаем следующее уравнение: s' = -ks, где k > 0 — коэффициент пропорциональности. Знак «—» говорит об уменьшении стоимости оборудования с течением времени.

Разделим переменные:
$$\frac{ds}{dt} = -ks$$
, $ds = -ksds$, $\frac{ds}{s} = -kdt$.

Проинтегрировав последнее уравнение, получим:

lns = -kt + lnC, где C = const.

 $lns = lne^{-kt} + lnC.$

 $lns = ln (Ce^{-kt}).$

Общее решение дифференциального уравнения s' = -ks имеет вид: $s = Ce^{-kt}$.

Начальная стоимость s_0 задает начальное условие для полученного уравнения: $s(0) = s_0 \times s' = -ks$ при $s(0) = s_0$.

Найдем C, подставив в полученное общее решение условие $s(0) = s_0$. Имеем: $s(0) = Ce^{-k+0} = C = s_0$. Тогда частное решение уравнения s' = -ks равно $s = s_0e^{-kt}$. Таким образом, зная коэффициент износа k и начальную стоимость оборудования s_0 , по формуле $s = s_0e^{-kt}$ можно найти фактическую стоимость оборудования по истечении любого времени t.

С помощью дифференциального уравнения естественного роста можно решить задачу истощения ресурсов Земли и другие задачи социальной и экономической сфер.